Contextually Supervised Source Separation with Application to Energy Disaggregation

نویسندگان

  • Matt Wytock
  • J. Zico Kolter
چکیده

We propose a new framework for single-channel source separation that lies between the fully supervised and unsupervised setting. Instead of supervision, we provide input features for each source signal and use convex methods to estimate the correlations between these features and the unobserved signal decomposition. We analyze the case of `2 loss theoretically and show that recovery of the signal components depends only on cross-correlation between features for different signals, not on correlations between features for the same signal. Contextually supervised source separation is a natural fit for domains with large amounts of data but no explicit supervision; our motivating application is energy disaggregation of hourly smart meter data (the separation of whole-home power signals into different energy uses). Here we apply contextual supervision to disaggregate the energy usage of thousands homes over four years, a significantly larger scale than previously published efforts, and demonstrate on synthetic data that our method outperforms the unsupervised approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signal Aggregate Constraints in Additive Factorial HMMs, with Application to Energy Disaggregation

Blind source separation problems are difficult because they are inherently unidentifiable, yet the entire goal is to identify meaningful sources. We introduce a way of incorporating domain knowledge into this problem, called signal aggregate constraints (SACs). SACs encourage the total signal for each of the unknown sources to be close to a specified value. This is based on the observation that...

متن کامل

Label Correction and Event Detection for Electricity Disaggregation

Electricity disaggregation focuses on identifying individual appliances from one or more aggregate signals. By reporting detailed appliance usage to consumers, disaggregation has the potential to significantly reduce electrical waste in residential and commercial sectors. However, application of existing methods is limited by two critical shortcomings. First, supervised learning methods implici...

متن کامل

On the Applicability of Ant Colony Optimization to Non-Intrusive Load Monitoring in Smart Grids

Along with the proliferation of the Smart Grid, power load disaggregation is a research area that is lately gaining a lot of popularity due to the interest of energy distribution companies and customers in identifying consumption patterns towards improving the way the energy is produced and consumed (via e.g. demand side management strategies). Such data can be extracted by using smart meters, ...

متن کامل

Unsupervised disaggregation of appliances using aggregated consumption data

Non-Intrusive Load Monitoring (NILM) is a technique that determines the electrical load composition of a household through a single point of measurement at the main power feed. In contrast with the majority of the existing approaches to solve this problem which require training, here we explore an unsupervised approach to determine the number of appliances in the household, their power consumpt...

متن کامل

Energy Disaggregation via Learning Powerlets and Sparse Coding

In this paper, we consider the problem of energy disaggregation, i.e., decomposing a whole home electricity signal into its component appliances. We propose a new supervised algorithm, which in the learning stage, automatically extracts signature consumption patterns of each device by modeling the device as a mixture of dynamical systems. In order to extract signature consumption patterns of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014